Face image classification by pooling raw features
نویسندگان
چکیده
We propose a very simple, efficient yet surprisingly effective feature extraction method for face recognition (about 20 lines of Matlab code), which is mainly inspired by spatial pyramid pooling in generic image classification. We show that features formed by simply pooling local patches over a multi-level pyramid, coupled with a linear classifier, can significantly outperform most recent face recognition methods. The simplicity of our feature extraction procedure is demonstrated by the fact that no learning is involved (except PCA whitening). We show that, multi-level spatial pooling and dense extraction of multi-scale patches play critical roles in face image classification. The extracted facial features can capture strong structural information of individual faces with no label information being used. We also find that, pre-processing on local image patches such as contrast normalization can have an important impact on the classification accuracy. In particular, on the challenging face recognition datasets of FERET and LFW-a, our method improves previous best results by more than 10% and 20%, respectively.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملFace Identification with Second-Order Pooling
Automatic face recognition has received significant performance improvement by developing specialised facial image representations. On the other hand, generic object recognition has rarely been applied to the face recognition. Spatial pyramid pooling of features encoded by an over-complete dictionary has been the key component of many state-of-the-art image classification systems. Inspired by i...
متن کاملTwo-Tier genetic programming: towards raw pixel-based image classification
Classifying images is of great importance in machine vision and image analysis applications such as object recognition and face detection. Conventional methods build classifiers based on certain types of image features instead of raw pixels because the dimensionality of raw inputs is often too large. Determining an optimal set of features for a particular task is usually the focus of convention...
متن کاملEarly detection of MS in fMRI images using deep learning techniques
Introduction & Objective:MS is a disease of the central nervous system in which the body makes a defensive attack on its tissues. The disease can affect the brain and spinal cord, causing a wide range of potential symptoms, including balance, movement and vision problems. MRI and fMRI images are a very important tool in the diagnosis and treatment of MS. The aim of this study was to provide...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 54 شماره
صفحات -
تاریخ انتشار 2016